Search results for " 58E05"

showing 3 items of 3 documents

Four solutions for fractional p-Laplacian equations with asymmetric reactions

2020

We consider a Dirichlet type problem for a nonlinear, nonlocal equation driven by the degenerate fractional p-Laplacian, whose reaction combines a sublinear term depending on a positive parameter and an asymmetric perturbation (superlinear at positive infinity, at most linear at negative infinity). By means of critical point theory and Morse theory, we prove that, for small enough values of the parameter, such problem admits at least four nontrivial solutions: two positive, one negative, and one nodal. As a tool, we prove a Brezis-Oswald type comparison result.

Sublinear functionGeneral MathematicsMathematical analysisDegenerate energy levelsType (model theory)Fractional p-LaplacianCritical point (mathematics)Dirichlet distributionNonlinear systemsymbols.namesakeMathematics - Analysis of PDEsSettore MAT/05 - Analisi Matematicacritical point theory35A15 35R11 58E05p-LaplaciansymbolsFOS: Mathematicsasymmetric reactionsMathematicsMorse theoryAnalysis of PDEs (math.AP)
researchProduct

Constant sign and nodal solutions for parametric anisotropic $(p, 2)$-equations

2021

We consider an anisotropic ▫$(p, 2)$▫-equation, with a parametric and superlinear reaction term.Weshow that for all small values of the parameter the problem has at least five nontrivial smooth solutions, four with constant sign and the fifth nodal (sign-changing). The proofs use tools from critical point theory, truncation and comparison techniques, and critical groups. Spletna objava: 9. 9. 2021. Abstract. Bibliografija: str. 1076.

udc:517.9electrorheological fluidsElectrorheological fluidMaximum principleMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: Mathematicsconstant sign and nodal solutionsAnisotropyanisotropic operators regularity theory maximum principle constant sign and nodal solutions critical groups variable exponent electrorheological fluidsParametric statisticsMathematicsvariable exponentVariable exponentApplied MathematicsMathematical analysisudc:517.956.2regularity theoryAnisotropic operatorsanisotropic operatorsTerm (time)Primary: 35J20 35J60 35J92 Secondary: 47J15 58E05maximum principleConstant (mathematics)critical groupsAnalysisAnalysis of PDEs (math.AP)Sign (mathematics)
researchProduct

Nonradial normalized solutions for nonlinear scalar field equations

2018

We study the following nonlinear scalar field equation $$ -\Delta u=f(u)-\mu u, \quad u \in H^1(\mathbb{R}^N) \quad \text{with} \quad \|u\|^2_{L^2(\mathbb{R}^N)}=m. $$ Here $f\in C(\mathbb{R},\mathbb{R})$, $m>0$ is a given constant and $\mu\in\mathbb{R}$ is a Lagrange multiplier. In a mass subcritical case but under general assumptions on the nonlinearity $f$, we show the existence of one nonradial solution for any $N\geq4$, and obtain multiple (sometimes infinitely many) nonradial solutions when $N=4$ or $N\geq6$. In particular, all these solutions are sign-changing.

Applied Mathematics010102 general mathematicsMathematical analysisMathematics::Analysis of PDEsGeneral Physics and AstronomyStatistical and Nonlinear Physics01 natural sciences010101 applied mathematicsNonlinear systemsymbols.namesakeMathematics - Analysis of PDEsLagrange multiplierFOS: Mathematicssymbols[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsConstant (mathematics)Scalar fieldComputingMilieux_MISCELLANEOUS35J60 58E05Mathematical PhysicsAnalysis of PDEs (math.AP)MathematicsNonlinearity
researchProduct